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S1. Model 2: Beyond Contagion (Analytic Approach)

In this section we give a calculus-based analogue to the geometric arguments in the Section entitled “Model
2: Beyond Contagion, a More Complex 3-Dimensional Model” for the 3D system (10) with α10 6= 0. This
calculus-based approach is important in our examination of higher-dimensional cases. Substitute

I =

(
γ

δ + ε

)
C (S1)

from the right hand side of (10b) into the right hand side of (10a) to obtain a family of curves

G(C,α10) ≡ −(β + γ)C + α11C
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C

)
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) + δ

(
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)
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(
γ + δ + ε

δ + ε

)
C

)
.

parameterized by α10. For each α10, the zeroes of C → G(C,α10), along with (S1), give the components of
the zeroes of system (10a), (10b).

When α10 = 0, G(C, 0) = 0 has two solutions C = 0 and another one C = C∗, which can be computed
from (7). For α10 = 0, we examine two cases, using the results of Subsection “Phase Plane Analysis of
System (2).”

1. If C∗ > 0, then C∗ is the C-component of the (globally stable) endemic equilibrium of the system.

2. If C∗ < 0, then C = I = 0 is the unique equilibrium of the system, and it is globally stable.

Inequality (4) separates these two cases.
Write C(α10) for the zero of G(·, α10) that bifurcates from C = 0 as α10 increases from 0, i.e.,

G(C(α10), α10) = 0, and C(0) = 0. (S2)

Use the Implicit Function Theorem to compute how C changes with α10:

dC

dα10
(0) = −

∂G

∂α10
(C(0), 0)

∂G

∂C
(C(0), 0)

= − N

α11 −
(
β +

εγ

δ + ε

) . (S3)

From the Subsection on “Phase Plane Analysis of System (2),” Case 1 holds when the denominator of (S3)

is positive and so
dC

dα10
(0) < 0. Therefore, C(α10) is negative for (small) positive α10. This means that there

is now only one non-negative root, and it’s the one that bifurcates from the endemic equilibrium. Case 2

above holds when the denominator of (S3) is negative, and so
dC

dα10
(0) > 0, i.e., C is increasing in α10. In

this case, the root C = 0 bifurcates to a strictly positive root, and the crime-free equilibrium bifurcates to a
low-crime equilibrium, while the other root of G remains negative.

Incidentally, let

H(C;α10) ≡ G(C,α10) ·
(
N −

(
γ

δ + ε

)
C

)
.

For each α10, H is a quadratic in C, with the same zeroes as G. Figure S1 interprets the argument of this
subsection geometrically in terms of the graph of the quadratic H as α10 increases. In Figure S1, the lower
parabolas in each case are the graphs of H for α10 = 0, while the higher parabolas are the graphs of H for
α10 > 0. The Figure also indicates that the results of this Section hold for all α10 > 0, not just α10 near 0.
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Figure 1. S1. Graphs of H as α10 changes.

S2. Model 3: Beyond Contagion (Analytic Approach)

Here we present an analytic proof of the results in Subsection “Beyond Contagion: More Complex 5-
Dimensional Model.” To replicate the analytic argument of Section S1 for the five-dimensional model,
substitute the expressions in (40) into the right hand side of (38a) to get a function in the single variable
R, parameterized by α10. As we did in Section S1, write this parameterized function as R → Ĝ(R,α10),
and multiply it by its denominator N − I to get a quadratic function R → Ĥ(R;α10). The zeroes of this
quadratic give the R values of the equilibria of the modified system (10) for each α10 ≥ 0. Use (40) to get
the values of the other variables. When α10 = 0, the zeros of Ĥ are R = 0 and a non-zero R∗. We argue
now that the graphs of Ĥ are like those in Figure S1 – they are concave-down parabolas that move up as
α10 increases.

To see that these graphs move up as α10 increases, one need only note that
∂Ĝ

∂α10
and

∂Ĥ

∂α10
are both

positive. To see whether they are concave up or concave down, focus on the case where the crime-free
equilibrium is globally stable for α10 = 0, that is, the case where (19) holds. It is easy to compute that
all the systems considered in this paper are well-defined, in the sense that any orbit that starts in the non-
negative orthant, stays in that orthant for all time. One verifies this by noting that for any variable x,
when x = 0, ẋ ≥ 0 for all nonnegative parameter values. When (19) holds, the origin is an asymptotically
stable equilibrium for α10 = 0. If as α10 increases, the sink at the origin would bifurcate to a sink outside
the nonnegative orthant, then orbits that start near the origin would leak out of the orthant toward this
new sink, and the nonnegative orthant would no longer be invariant. It follows that as α10 increases, the
new sink must stay in the non-negative orthant, in other words as α10 increases, the corresponding zero of
Ĥ(·, α10) cannot move to the left; the situation on the top left of Figure S2 must occur, not the situation on
the bottom-right.

A similar argument holds for the case where the origin is unstable for α10 = 0. As α10 increases from 0,
the unstable equilibrium that bifurcates from the origin must move out of the first orthant in order for the
first orthant to remain invariant.

The rest of the argument is that illustrated in the top left of Figure S2. The quadratic Ĥ(·;α10) is concave

2



Figure 2. S2. Two possible graphs of H as α10 increases.

down and moves up as α10 increases. This means that, when (19) holds and α10 increases, the crime-free
equilibrium bifurcates to a low crime equilibrium. When (19) does not hold and α10 increases, the globally
stable endemic equilibrium bifurcates to an equilibrium with higher values of C1, C2, I, R, just as in the 3-D
case.

S3. Variables and Parameters in the Three-Strike Model

The following lists summarize the notation used in system (45).

Populations

X Population of non-criminally active individuals with no criminal record, but who
are susceptible to temptation to criminal behavior.

C1 Non-incarcerated criminally active population without a criminal record.
C2 Non-incarcerated criminally active population who have been incarcerated exactly

once.
C3 Non-incarcerated criminally active population who have been incarcerated at least

twice.
I1 Incarcerated population of first-time offenders.
I2 Incarcerated population of second-time offenders.
I3 Incarcerated population of third-time offenders.
R1 “Released” population of first-time offenders.
R2 “Released” population of second-time offenders.
N Total population.
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Parameters

α11 Contagion parameter of criminal behavior from X to C1.
α10 Propensity of citizens to turn to crime for the first time independent of contagion.
α21 Contagion parameter of criminal behavior from R1 to C2 (recidivism).
α20 Propensity towards recidivism from R1 to C2 independent of contagion; a measure

of the role of prisons as ”schools of crime.”
α31 Contagion parameter of criminal behavior from R2 to C3 (recidivism).
α30 Propensity towards recidivism from R2 to C3 independent of contagion; a measure

of the role of prisons as ”schools of crime.”
β1 Rate at which criminally active without criminal records discontinue criminal habits

through non-punitive measures; desistance of first-time criminals.
β2 Rate at which second-time criminals discontinue criminal habits through non-

punitive measures; desistance of second-time criminals.
β3 Rate at which third-time criminals discontinue criminal habits through non-punitive

measures; desistance of third-time criminals.
γ1 Rate at which criminals are incarcerated for the first time; incapacitation of first-

time offenders.
γ2 Rate at which criminals are incarcerated for the second time; incapacitation of

second-time offenders.
γ3 Rate at which criminals are incarcerated for the third time; incapacitation of third-

time offenders.
ε1 Rate at which non-active former offenders released from prison for the first time

assimilate back into society as though their criminal records have been expunged;
rehabilitation of first time offenders.

ε2 Rate at which non-active former offenders released from prison for the second time
assimilate back into society as though their criminal records have been expunged;
rehabilitation of second-time offenders.

ρ1 Rate at which those incarcerated for the first time are released.
ρ2 Rate at which those incarcerated for the second time are released.
ρ3 Rate at which those incarcerated for the third time are released (a leakage in the

three-strike policy).

S4. Lyapunov Function Derivation of the Threshold for 9D Model (45)

The crime-free equilibrium has

X = N, C1 = C2 = C3 = I1 = I2 = I3 = R1 = R2 = 0.

We use the same Lyapunov function approach to find its stability conditions, using the last eight equations.
(Note, in passing, that I3 = N and all other variables equal to 0 is also a steady state of this system, which
we will treat later.)

Let
V = C1 +A1I1 +A2R1 +B0C2 +B1I2 +B2R2 +G0C3 +G1I3.

Then, from (45),

V̇ = Ċ1 +A1İ1 +A2Ṙ1 +B0Ċ2 +B1İ2 +B2Ṙ2 +G0Ċ3 +G1İ3

= α11X

(
C1 + C2 + C3

N − ΣI

)
− β1C1 − γ1C1

+A1γ1C1 −A1ρ1I1

+A2ρ1I1 −A2α20R1 −A2α21R1

(
C1 + C2 + C3

N − ΣI

)
−A2ε1R1 +A2β2C2

−B0γ2C2 +B0α20R1 +B0α21R1

(
C1 + C2 + C3

N − ΣI

)
−B0β2C2 (S4)
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+B1γ2C2 −B1ρ2I2

+B2ρ2I2 −B2α30R2 −B2α31R2

(
C1 + C2 + C3

N − ΣI

)
−B2ε2R2 +B2β3C3 +B2ρ3I3

−G0γ3C3 +G0α30R2 +G0α31R2
C1 + C2 + C3

N − ΣI
−G0β3C3

+G1γ3C3 −G1ρ3I3

Rearranging,

V̇ =C1 ·
[
α11

(
X

N − ΣI

)
− (β1 + γ1) +A1γ1

]
(S5)

+I1

[
−A1ρ1 +A2ρ1

]
(S6)

+R1

[
−A2ε1 −A2α20 −A2α21

(
C1 + C2 + C3)

N − ΣI

)
+B0α20 +B0α21

(
C1 + C2 + C3)

N − ΣI

)]
(S7)

+C2

[
α11

(
X

N − ΣI

)
+A2β2 −B0β2 +B1γ2 −B0γ2

]
(S8)

+I2

[
−B1ρ2 +B2ρ2

]
(S9)

+R2

[
−B2α31

(
C1 + C2 + C3)

N − ΣI

)
−B2α30 +G0α31

(
C1 + C2 + C3)

N − ΣI

)
+G0α30 −B2ε2

]
(S10)

+C3

[
α11

(
X

N − ΣI

)
+B2β3 −G0γ3 +G1γ3 −G0β3

]
(S11)

+I3(B2ρ3 −G1ρ3). (S12)

We seek conditions under which V̇ < 0 for all nonnegative values of the parameters; equivalently, condi-
tions under which all the expressions in the square brackets in (S5) to (S12) are ≤ 0. This works in (S5),
provided

α11 − (β1 + γ1) +A1γ1 ≤ 0 or equivalently A1 ≤
(β1 + γ1)− α11

γ1
; (S13)

in (S6), (S9) and (S12), provided

A2 ≤ A1 and B2 ≤ B1 and B2 ≤ G1; (S14)

in (S8), provided
α11 +A2β2 +B1γ2 ≤ B0(β2 + γ2); (S15)

in (S11), provided
α11 +B2β3 +G1γ3 ≤ G0(β3 + γ3); (S16)

in (S7), provided

B0 ≤ A2

(
1 +

ε1
α20 + α21

)
; (S17)

and in (S10), provided

G0 ≤ B2

1 +
ε2

α30

( ∑
C

N −
∑
I

)
+ α31

 , (S18)

which will hold if:

G0 ≤ B2

(
1 +

ε2
α30 + α31

)
. (S19)
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Choose equality in (S14) , (S17), (S19), so that

A1 = A2, B1 = B2,= G1 B0 = A2

(
1 +

ε1
α20 + α21

)
, G0 = B2

(
1 +

ε2
α30 + α31

)
. (S20)

(S16) can be written as:

α11 +B2β3 +B2γ3 = α11 +B2(β3 + γ3) ≤ G0(β3 + γ3), (S21)

which we will treat as an equality and, including (S20), write as:

α11

β3 + γ3
+B2 = G0 = B2

(
1 +

ε2
α30 + α31

)
. (S22)

Now we solve:

B2 =

(
α11

β3 + γ3

)(
α30 + α31

ε2

)
and G0 =

(
α11

β3 + γ3

)(
α30 + α31 + ε2

ε2

)
(S23)

Combine (S23), (S15), and (S17) to obtain:

α11 +A2β2 +

(
α11γ2
β3 + γ3

)(
α30 + α31

ε2

)
≤ B0(β2 + γ2)

≤ A2

(
1 +

ε1
α20 + α21

)
(β2 + γ2)

≤ A2

(
γ2 +

ε1(β2 + γ2)

α20 + α21

)
+A2β2

Therefore, [
α11 +

(
α11γ2
β3 + γ3

)(
α30 + α31

ε2

)](
γ2 +

ε1(β2 + γ2)

α20 + α21

)−1

≤ A1.

As before, we conclude that the threshold for global stability of the crime-free equilibrium is:[
α11 +

(
α11γ2
β3 + γ3

)(
α30 + α31

ε2

)](
γ2 +

ε1(β2 + γ2)

α20 + α21

)−1

≤ (β1 + γ1)− α11

γ1

or [
α11 +

(
α11γ2
β3 + γ3

)(
α30 + α31

ε2

)]
≤
(

(β1 + γ1)− α11

γ1

)(
γ2 +

ε1(β2 + γ2)

α20 + α21

)
(S24)

or, after a bit of algebra,(
α11

β1 + γ1

)[
1 +

(α20 + α21)γ1
(α20 + α21)γ2 + ε1(β2 + γ2)

+
(α20 + α21)γ1(α30 + α31)γ2

ε2(β3 + γ3)[(α20 + α21)γ2 + ε2(β2 + γ2)]

]
< 1 (S25)

The left hand side of (S25) is our candidate for R0 of system (45).

S5. Three-Strike Policy Dynamics

System (45) with ρ3 = 0 is our dynamic model of the Three-Strike Policy. To study its dynamics, we work in
X,C1, C2, C3, R1, R2, I1, I2 space, whose origin corresponds to I3 = N . Use V = X+C1+C2+C3+R1+R2+
I1 + I2 as Lyapunov function. Since V + I3 = N , V̇ = −İ3 = −γ3C3. So, V̇ is always ≤ 0 and C3 decreases
to 0 along solutions of the revised (45). To find the long run equilibrium, set the right-hand sides of the
revised system (45) equal to 0. If C3 = 0, then R2 = 0 by (45h). If R2 = C3 = 0, then I2 = 0 by (45g), and
so on. It follows that all orbits of the revised system (45) flow to C1 = C2 = C3 = R1 = R2 = I1 = I2 = 0.

To see what happens to X and I3, work in X,C1 space, setting R1 = R2 = 0. The result is basically
system (44a), (44b). The analysis in subsection entitled “Effect of Long-term sentences for the 5D Model:
Eliminating Parole” shows that when R0 > 1, in particular when α11 > (β1 + γ1), then X → 0 and everyone
ends up in prison. When α11 < (β1 + γ1), the population splits in the long run between non-criminals and
permanently imprisoned.

6


